Advances and Challenges in Predicting SME Failures: A Literature Review on Methodological Trends, Data Imbalance Solutions, and Model Validation Practices

Authors

  • Muhammad Rizal STIE Kasih Bangsa
  • Farah Qalbia STIE Kasih Bangsa

DOI:

https://doi.org/10.70142/kbijmaf.v2i1.267

Keywords:

SME failure prediction, Machine learning models, Data imbalance, Model validation, Predictive analytics

Abstract

This qualitative literature review explores the advances and challenges in predicting SME failures, focusing on methodological trends, data imbalance solutions, and model validation practices. Over recent years, machine learning techniques have gained prominence, replacing traditional statistical models and improving predictive accuracy. Key strategies for overcoming data imbalance, such as Synthetic Minority Over-sampling Technique (SMOTE) and cost-sensitive learning, have also been highlighted. However, challenges persist, particularly in model interpretability, generalization, and overfitting. The review emphasizes the need for continuous refinement of predictive models and validation practices to ensure real-world applicability. The findings suggest that while considerable progress has been made, future research should aim to enhance model transparency and address limitations in data representation to improve SME failure prediction across diverse contexts.

References

Abdullah, N. A. H., Ahmad, A. H., Zainudin, N., & Rus, R. M. (2016a). Modelling small and medium-sized enterprises’ failure in Malaysia. International Journal of Entrepreneurship & Small Business, 28, 101–116. https://doi.org/10.1504/IJESB.2016.075686

Abdullah, N. A. H., Ahmad, A. H., Zainudin, N., & Rus, R. M. (2019). Predicting financially distressed small- and medium-sized enterprises in Malaysia. Global Business Review, 20(4), 627–639. https://doi.org/10.1177/0972150919837053

Abedin, M. Z., Guotai, C., Hajek, P., & Zhang, T. (2022). Combining weighted SMOTE with ensemble learning for the class-imbalanced prediction of small business credit risk. Complex & Intelligent Systems, 9(4), 3559–3579. https://doi.org/10.1007/s40747-021-00614-4

Altman, E. I., Balzano, M., Giannozzi, A., & Srhoj, S. (2022). Revisiting SME default predictors: The omega score. Journal of Small Business Management, 61(6), 2383–2417. https://doi.org/10.1080/00472778.2022.2135718

Altman, E. I., Sabato, G., & Wilson, N. (2022). The Omega score for SME failure prediction: A new approach. International Journal of Forecasting, 38(2), 346–360. https://doi.org/10.1016/j.ijforecast.2021.06.005

Amelia, Y., Kusnanto, E., & Permana, N. (2023). Pengaruh pengetahuan keuangan, sikap, dan kepribadian terhadap perilaku manajemen keuangan pelaku UMKM. Jurnal Ekobistek, 12(2), 533–538. https://doi.org/10.35134/ekobistek.v12i2.533

Angelini, E., DiTollo, G., & Roli, A. (2008). A neural network approach for credit risk evaluation. The Quarterly Review of Economics & Finance, 48(4), 733–755. https://doi.org/10.1016/j.qref.2007.04.001

Chai, Y., Li, Z., & Li, J. (2019). Multicriteria credit rating prediction for small- and medium-sized enterprises: A hybrid model. Expert Systems with Applications, 126, 74–88. https://doi.org/10.1016/j.eswa.2019.02.009

Chaidir, M., Yulianti, G., & Santoso, S. (2024). Dampak digitalisasi terhadap inovasi teknologi pada usaha mikro, kecil, dan menengah. Jurnal Visi Manajemen, 10(2), 74–87. https://doi.org/10.56910/jvm.v10i2.523

Cheraghali, H., & Molnár, P. (2023). SME default prediction: A systematic methodology-focused review. Journal of Small Business Management, 62(6), 2847–2905. https://doi.org/10.1080/00472778.2023.2277426

Ciampi, F., Cillo, V., & Fiano, F. (2020). Combining Kohonen maps and prior payment behavior for small enterprise default prediction. Small Business Economics, 54, 1007–1039. https://doi.org/10.1007/s11187-018-0117-2

Ciampi, F., Giannozzi, A., Marzi, G., & Altman, E. I. (2020). Rethinking SME default prediction: A systematic literature review and future perspectives. Scientometrics, 126(4), 2141–2188. https://doi.org/10.1007/s11192-020-03856-0

Cornée, S. (2019). The relevance of soft information for predicting small business credit default: Evidence from a social bank. Journal of Small Business Management, 57, 699–719. https://doi.org/10.1111/jsbm.12318

Costa, E., Giudici, P., & Antonucci, R. (2022). Validation of SME credit risk models using machine learning techniques: A comprehensive review. Journal of Risk and Financial Management, 15(3), 85–101. https://doi.org/10.3390/jrfm15030085

Kusnanto, E., Qalbia, F., & Amelia, Y. (2024). Dampak penghindaran pajak terhadap struktur jatuh tempo utang pada UMKM. Jurnal Visi Manajemen, 10(1), 16–27. https://doi.org/10.56910/jvm.v10i1.521

Rizal, M., Ruslaini, R., & Kusnanto, E. (2022). Peran regulasi dalam mendorong adopsi cloud computing UMKM DKI Jakarta. Journal of Business, Finance, and Economics (JBFE), 3(1), 130–136. https://doi.org/10.32585/jbfe.v3i1.5707

Ruslaini, R., Kasih, E. W., & Santoso, S. (2024). Kajian literatur adopsi cloud computing pada UMKM: Perspektif strategis dan dinamika dalam satu dekade. Jurnal Visi Manajemen, 10(3), 231–245. https://doi.org/10.56910/jvm.v10i3.526

Downloads

Published

2025-01-20

How to Cite

Muhammad Rizal, & Farah Qalbia. (2025). Advances and Challenges in Predicting SME Failures: A Literature Review on Methodological Trends, Data Imbalance Solutions, and Model Validation Practices. International Journal of Management, Accounting &Amp; Finance (KBIJMAF), 2(1), 16–32. https://doi.org/10.70142/kbijmaf.v2i1.267

Most read articles by the same author(s)